钢结构网架安全检测报告办理
随着现代工业生产和科学技术的高速发展,在航空、航天、核能、汽车、石油、化工、铁路、建筑等产业方面,无损检测技术已发挥着越来越重要的作用;而在航空、航天、核能、汽车、石油、化工、铁路、建筑等产业方面,无处不是已焊接技术为支撑的。焊接技术在各行各业的焊接结构中有着广泛的应用,为保证焊接结构中焊缝的质量,无损检测技术在该领域发挥着重要的作用。作为一名无损检测工作者,也许你掌握了丰富的无损检测知识,对焊缝中的内部缺欠定位和定量也十分的准确,可对于缺欠的定性往往是难题,每当焊接工作者问及我们焊缝中缺欠的性质以及怎样才能保证不产生类似的缺欠时,我们如果不能解答,这场面肯定是很尴尬的。针对这些问题,对于我们无损检测工作者来说,掌握一定的焊接知识是非常有必要的,从而也能够全面地提高自己的无损检测技能。对于焊缝中的缺欠不仅要知其然,较要知其然,这样也可以给焊接工作者提出一个性的焊接工艺作为参考。
在我们日常的无损检测工作中,是需要了解一些焊接信息的,在报告中也需要体现出来,譬如焊接方法、焊接接头形式、坡口形式等,如果检测中发现有焊接缺欠,还得了解这些缺欠的性质和大小,从而根据检测标准和设计要求来判定这些缺欠是否在可接受的范围内。这里所说到的焊接方法、焊接接头形式、坡口形式、焊接缺欠就是一些焊接基本的知识,是我们检测人员所必须掌握的。如果掌握了这些焊接基本知识,会对我们的检测工作带来很大帮助,会较加形象的认识到焊接缺欠的位置、性质及成因,特别是焊缝中的内部缺欠。焊缝中的内部缺欠检测,在现实生活中用得多的无损检测方法就是超声波检测和射线检测,其检测结果是根据超声反射波和射线底片影像进行判定的。
焊接基础知识:焊接是通过加热、加压,或两者并用,使同性或两工件产生原子间结合的加工工艺和联接方式。其优点为节省材料,减轻质量,生产成本低;简化复杂零件和大型零件的加工工艺,缩短加工周期;适应性好;可实现结构的生产及不同材料间的连接成型;整体性好,具有良好的气密性、水密性;降低劳动强度,改善劳动条件等。焊接应用广泛,既可用于金属,也可用于非金属。本文着重为无损检测工作者了解焊接的一些基本知识,只简单介绍常用的金属熔化焊的焊接知识。熔化焊的本质是小熔池熔炼与铸造,是金属熔化与结晶的过程。熔池存在时间短,温度高;冶金过程进行不充分,氧化严重;热影响区大,冷却速度快,结晶后易生成粗大的柱状晶。
根据《建筑结构检测技术标准》(GB/T 50344-2004)规定和委托方要求,针对受检屋面网架的特点和现场实际情况,本次钢结构检测主要内容如下:
(1)钢网架基本情况调查;
(2)钢网架建筑结构图纸复核及测绘;
(3)钢网架变形检测;
(4)钢网架损伤检测;
(5)出具检测结论,提出相应建议。
网架主要由圆钢管通过网架球焊接而成,圆钢管截面尺寸主要为Φ100×5.0和Φ60×3.5,网架球直径约为120,球壁厚度约为10.0。网架与建筑主体结构之间的连接采用预埋钢板焊接。屋面网架南侧和东侧分别设置钢构架斜撑,钢构架主要采用双角钢2∟63×5.0,斜撑与主体结构亦采用焊接连接。根据《建筑结构检测技术标准》GB/T50344-2004、《既有建筑物结构检测与评定标准》DG/TJ08-804-2005、《钢结构现场检测技术标准》GB/T 50621-2010等规范的相关规定,对受检网架进行现场检测。
经现场检测,受检网架室内部分主要损伤为杆件表面涂层开裂,与玻璃屋面连接处钢构件一般锈蚀;室外网架大部分杆件轻微锈蚀,网架球节点严重锈蚀,部分节点连接失效。由于现场屋面网架下部有绸缎遮挡,不具备检测条件,未能对屋面网架挠度进行检测。
在建筑工程中对于各项安全指标的检测是非常必要的,过程同样是重中之重。在进行钢结构检测的过程中,既包括对钢材质量的检测,又需要对紧固件的连接之间进行检测,而取样也特别重要,那么高质量的钢结构检测取样方法有哪些?
一、钢材质量检测取样方法
1、钢结构化学成分分析的取样方法:
在钢结构检测过程中,对其化学成分进行分析取样应确保能够代表产品的化学成分的平均值,去除所取样本的表面涂层以及其它方面的污染,尽可能避免有裂纹、疏松等缺陷的地方,并且质量尽可能大一些,如果是粉末状的样品,可以用钻、切或者车、冲的方法取样,也可以用破碎机将小块的材料破碎来进行取样。
2、力学性能检测取样方法:
钢结构检测中的力学性能检测,在取样过程中要避免过热以及加工硬化而造成影响力学性能的现象,取样的位置与方向应该按照规定来确定,确保构件的安全,拉伸、冷弯实验都需要抽取一个试样,而冲击试验需要抽取三个,屈服点与抗拉强度不够是,还应该采取补充拉伸试验。
二、紧固件以及网架节点连接质量检测取样方法
1、钢网架用的高强度螺栓检测取样方法
同一性能的钢结构检测过程中,对于其等级、材料以及炉号、规格和机械加工都应进行取样检测,并且还应对热处理以及表面上的处理工艺的螺栓作为同一个批次进行取样,每批次以及规格应抽取相同的数量。
2、高强度螺栓的连接摩擦面的取样方法
钢结构检测过程中,高强度螺栓之间的连接以及摩擦面在取样时,需要根据螺栓的长度与某个能够代表工程的部位来确定,试件的表面应该保持平整,没有油污,孔与板的边缘没有飞边、毛刺,所取的芯板的厚度应该能够保证处于一种弹性的变形状况,确保取样检测的准确性。
在进行钢结构检测过程中的取样应遵循以上几种方法,在实际的操作中尽可能选取一些完整的能够反映结构实际状况的样品,包括其化学成分检测、力学性能的检测,甚至钢网架用的高强度螺栓以及其连接面的检测取样等,正确的取样方法可以确保品质好的钢结构检测。
钢材力学性能指标
抗拉强度fu:反映钢材受拉时所能承受的极限应力。
伸长率:试件被拉断时的变形值与试件原标距之比的百分数,称为伸长率,伸长率代表材料在单向拉伸时的塑性应变的能力。
冷弯性能:冷弯性能由冷弯试验确定。试验时使试件弯成l80°,如试件外表面不出现裂纹和分层,即为合格。冷弯性能合格是钢材在弯曲状态下的塑性应变能力和钢材质量的综合指标。
韧性:韧性是钢材强度和塑性的综合指标。
由于低温对钢材的脆性破坏有显着影响,在寒冷地区建造的结构不但要求钢材具有常温(20℃)冲击韧性指标,还要求具有负温(0℃、-20℃或-40℃)冲击韧性指标,以保证结构具有足够的抗脆性破坏能力。
各种因素对钢材主要性能的影响
1)化学成分
碳直接影响钢材的强度、塑性、韧性和可焊性等。碳含量增加,钢的强度提高,而塑性、韧性和疲劳强度下降,恶化钢的可焊性和抗腐蚀性。硫和磷是钢中的有害成分,它们降低钢材的塑性、韧性、可焊性和疲
欧洲是当今**光伏产品的市场,也是中国光伏产品出口的主要地区,约占同期中国光伏电池出口总额的70%,美国市场仅占出口总额的20%。欧盟此次“双反”立案使国内原本一片惨淡的光伏企业雪上加霜。
2012中国光伏产业发展论坛公布的数据显示,今年上半年,中国太阳能光伏产品出口在保持了6年的连续快速增长后出现下滑,出口总额128.94亿美元,同比下滑约三成。事实上,国内光伏业已陷全行业亏损境地,光伏上市公司上半年下滑的业绩就是有力的。同花顺数据统计,今年上半年,69家A股光伏概念上市公司营业收入总额1092亿元,同比减少3%。由于产品价格、毛利率大幅下滑,这些公司的净利润总额仅为37亿元,与去年93亿元的净利润相比,同比剧减60%。
上半年出现亏损的公司也骤然增多,上半年净利润亏损的光伏类上市公司多达21家,也就是说,大约有三成的公司上半年出现亏损,累计亏损规模接近20亿元。而去年上半年,亏损的光伏上市公司仅5家。
继光伏成员赛维LDK和尚德电力被曝光可能面临破产之后,当前江浙一带已有大量中小型光伏企业面临破产,许多光伏生产设备在等待出卖,有些甚至是整条生产线以较低价格出让。有些老板已经跑路。
而低端的光伏制造业则是资本撤离的重灾区。记者了解到,江浙地区目前已有不少规模较小的光伏企业关门歇业。规模较大的中盛光电集团已宣布关闭硅片工厂,原因是严重亏损。
位于的光为绿色新能源公司总裁魏强表示,一年前,市场销售的光伏组件还能卖到1欧元/W,现在已降低至0.48欧元/W。币与欧元的汇率还在升值,使得光伏企业遭受价格大降的还要承受汇兑损失。
超声检测是常规无损检测技术之一,是目前应用广泛,使用频率且发展较快的一种无损检测技术。超声检测是产品制造中实现质量控制、节约原材料、改进工艺、提高劳动生产率的重要手段,也是设备维护中可不或缺的手段之一。我国特种设备相关法规,如《固定式压力容器安全技术监察规程》《蒸汽锅炉安全技术监察规程》《热水锅炉安全技术监察规程》等都对特种设备的制造、安装、修理改造或定期检验等环节提出了超声检测的要求。
超声检测一般是指使超声波与工件相互作用,就反射、衍射、透射和散射的波进行研究,对工件进行宏观缺陷检测、几何特性测量、组织结构和力学性能变化的检测和表征,并进而对其特定应用性进行评估的技术。在特种设备行业中,超声检测通常指宏观缺陷检测和材料厚度测量。
我国开始超声检测的研究和应用时间较短。1950年引进若干台瑞士制造的以声响穿透式超声波探伤仪,并用于路轨检验,这是国内应用这一技术的开端。经过60年的发展,我国的超声检测技术**了巨大的进步,超声检测技术几乎渗透到所有工业部门,建立了一只数量庞大技术人员队伍,理论及应用研究逐步深入,标准体系日渐完备,仪器设备制造行业蓬勃发展,管理水平逐步提高。与发达国家相比,我国的超声检测总体水平还有很大差距,在人员、设备、投入、管理、标准等方面还有待提高。